Towards Tighter Space Bounds for Counting Triangles and Other Substructures in Graph Streams
نویسندگان
چکیده
We revisit the much-studied problem of space-efficiently estimating the number of triangles in a graph stream, and extensions of this problem to counting fixed-sized cliques and cycles. For the important special case of counting triangles, we give a 4-pass, (1± ε)-approximate, randomized algorithm using Õ(ε−2 m3/2/T ) space, where m is the number of edges and T is a promised lower bound on the number of triangles. This matches the space bound of a recent algorithm (McGregor et al., PODS 2016), with an arguably simpler and more general technique. We give an improved multi-pass lower bound of Ω(min{m3/2/T,m/ √ T}), applicable at essentially all densities Ω(n) 6 m 6 O(n2). We prove other multi-pass lower bounds in terms of various structural parameters of the input graph. Together, our results resolve a couple of open questions raised in recent work (Braverman et al., ICALP 2013). Our presentation emphasizes more general frameworks, for both upper and lower bounds. We give a sampling algorithm for counting arbitrary subgraphs and then improve it via combinatorial means in the special cases of counting odd cliques and odd cycles. Our results show that these problems are considerably easier in the cash-register streaming model than in the turnstile model, where previous work had focused (Manjunath et al., ESA 2011; Kane et al., ICALP 2012). We use Turán graphs and related gadgets to derive lower bounds for counting cliques and cycles, with triangle-counting lower bounds following as a corollary. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph Theory
منابع مشابه
Efficient Algorithms for Approximate Triangle Counting
Counting the number of triangles in a graph has many important applications in network analysis. Several frequently computed metrics like the clustering coefficient and the transitivity ratio need to count the number of triangles in the network. Furthermore, triangles are one of the most important graph classes considered in network mining. In this paper, we present a new randomized algorithm f...
متن کاملA New Technique for Analyzing Substructures in Arrangements of Piecewise Linear Surfaces*
We present a simple but powerful new probabilistic technique for analyzing the combinatorial complexity of various substructures in arrangements of piecewise-linear surfaces in higher dimensions. We apply the technique (a) to derive new and simpler proofs of the known bounds on the complexity of the lower envelope, of a single cell, or of a zone in arrangements of simplices in higher dimensions...
متن کاملA second look at counting triangles in graph streams
In this paper we present improved results on the problem of counting triangles in edge streamed graphs. For graphs with m edges and at least T triangles, we show that an extra look over the stream yields a two-pass streaming algorithm that uses O( m ǫ4.5 √ T ) space and outputs a (1 + ǫ) approximation of the number of triangles in the graph. This improves upon the two-pass streaming tester of B...
متن کاملA note on the bounds of Laplacian-energy-like-invariant
The Laplacian-energy-like of a simple connected graph G is defined as LEL:=LEL(G)=∑_(i=1)^n√(μ_i ), Where μ_1 (G)≥μ_2 (G)≥⋯≥μ_n (G)=0 are the Laplacian eigenvalues of the graph G. Some upper and lower bounds for LEL are presented in this note. Moreover, throughout this work, some results related to lower bound of spectral radius of graph are obtained using the term of ΔG as the num...
متن کاملGeometric Arrangements: Substructures and Algorithms
In this thesis we study a variety of problems in computational and combinatorial geometry, which involve arrangements of geometric objects in the plane and in higher dimensions. Some of these problems involve the design and analysis of algorithms on arrangements and related structures, while others establish combinatorial bounds on the complexity of various substructures in arrangements. Inform...
متن کامل